
IGBT

Features

- 650V,60A
- $V_{CE(sat)(typ.)}=1.8V@V_{GE}=15V,I_{C}=60A$
- High speed switching
- Higher system efficiency
- Soft current turn-off waveforms
- Square RBSOA

JIAEN FS IGBTs offer lower losses and higher energy efficiency for application such as IH (induction heating),UPS, general inverter and other soft switching applications.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
Vces	Collector-Emitter Voltage	650	V
V _{GES}	Gate-Emitter Voltage	<u>+</u> 30	V
1	Continuous Collector Current (Tc=25 °C)	120	А
lc	Continuous Collector Current (Tc=100°C)	60	А
Ісм	Pulsed Collector Current (Note 1)	180	А
l _F	Diode Continuous Forward Current (T _C =100 °C)	60	А
I _{FM}	Diode Maximum Forward Current (Note 1)	180	А
tsc	Short Circuit Withstand Time	5	us
Ъ	Maximum Power Dissipation (T _C =25 °C)	246	W
P _D	Maximum Power Dissipation (T _C =100℃)	123	W
TJ	Operating Junction Temperature Range	-45 to +175	$^{\circ}$ C
T _{STG}	Storage Temperature Range	-55 to +150	$^{\circ}$ C

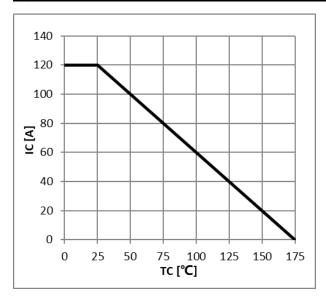
Thermal Characteristics

Symbol	Parameter	Max.	Units
R _{th j-c}	Thermal Resistance, Junction to case for IGBT	0.61	°C/ W
R _{th j-c}	Thermal Resistance, Junction to case for Diode	1.15	°C/W
R _{th j-a}	Thermal Resistance, Junction to Ambient	40	°C/W

Electrical Characteristics (Tc=25 °C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	650	-	-	V
I _{CES}	Collector-Emitter Leakage Current	$V_{CE} = 650 \text{V}, V_{GE} = 0 \text{V}$	-	-	100	uA
I _{GES}	Gate Leakage Current, Forward	$V_{GE} = + 20V, V_{CE} = 0V$	-	-	<u>+</u> 100	nA
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 250uA$	4.0	-	6.0	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =15V, I _C = 40A	-	1.8	2.4	V
Qg	Total Gate Charge	Vcc=480V	-	163.7		nC
Qge	Gate-Emitter Charge	V _{GE} =15V	-	31.3		nC
Qgc	Gate-Collector Charge	Ic=60A	-	81.2		nC
t d(on)	Turn-on Delay Time		-	81	-	ns
t r	Turn-on Rise Time	Vcc=400V	-	117	-	ns
t d(off)	Turn-off Delay Time	V _{GE} =15V	-	366	-	ns
t f	Turn-off Fall Time	I _C =60A R _G =25Ω	-	84	-	ns
Eon	Turn-on Switching Loss	Inductive Load	-	2.6	-	mJ
Eoff	Turn-off Switching Loss		-	2.0	-	mJ
Ets	Total Switching Loss		-	4.6	-	mJ
C _{ies}	Input Capacitance	V _{CE} =25V V _{GE} =0V f = 1MHz	-	3783	-	pF
Coes	Output Capacitance		-	162	-	pF
C _{res}	Reverse Transfer Capacitance		-	68	-	pF

$\underline{\textbf{Electrical Characteristics of Diode}}_{(T_C=25\,{}^{\circ}\!\text{C unless otherwise noted })}$


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _F	Diode Forward Voltage	I _F =60A	-	1.7	2.5	V
trr	Diode Reverse Recovery Time	V _{CE} = 400V	-	194		ns
Irr	Diode peak Reverse Recovery Current	I _F = 60A	-	16.9		Α
Qrr	Diode Reverse Recovery Charge	Rg=25 Ω	-	1268		nC

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

Typical Performance Characteristic

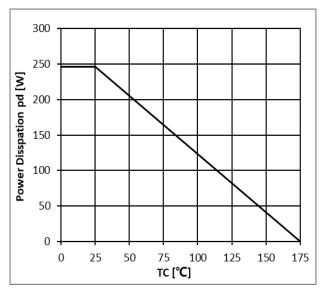
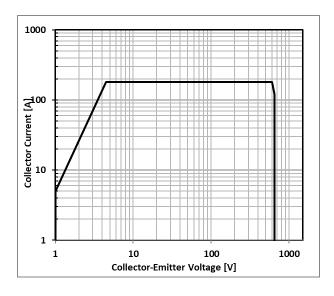



Figure 1: Maximum DC Collector Current VS. case temprature

Figure 2: Power Dissipation VS. Case Temperature

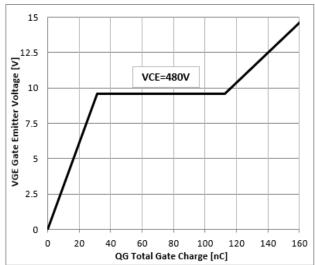
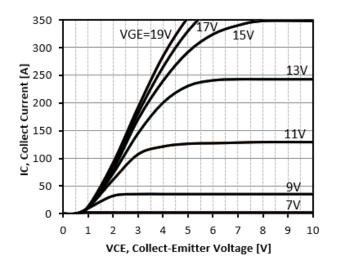



Figure 3: Reverse Bias SOA,TJ=125°C,VGE=15V

Figure 4: Typical Gate charge VS. VGE,IC=60A

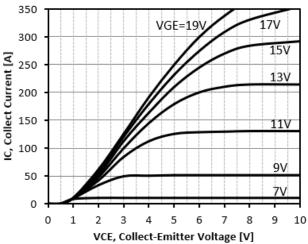
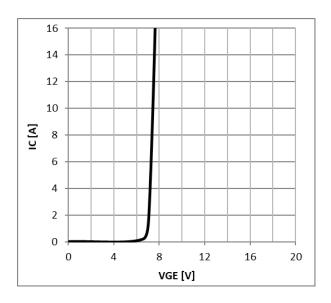



Figure 6: Typical IGBT Output characteristics, C=150°C;tp=300us

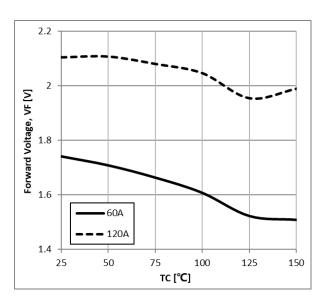


Figure 8: Typical Forward Voltage vs IF

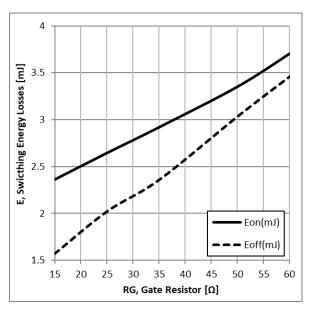


Figure 9: Typical Energy Loss VS. RG, TC=25 °C, L=200uH,VCE=400V,VGE=15V,IC=60A

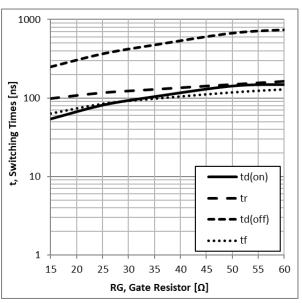


Figure 10: Typical Switching Time VS. RG, TC=25°C, L=200uH,VCE=400V,VGE=15V,IC=60A

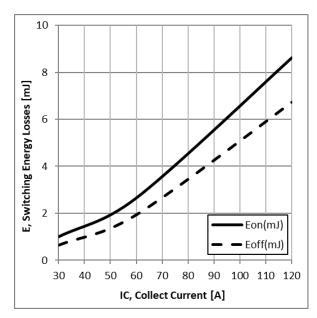


Figure 11: Typical Energy Loss VS. IC,TC=25 $^{\circ}$ C, L=200uH, VCE=400V, VGE=15V,RG=25 $^{\Omega}$

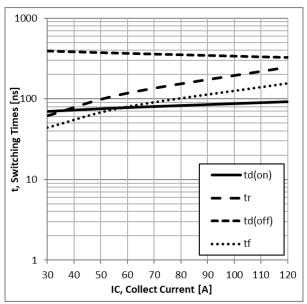


Figure 12: Typical Switching Time VS. IC,TC=25 $^{\circ}$ C, L=200uH,VCE=400V,VGE=15V,RG=25 $^{\Omega}$

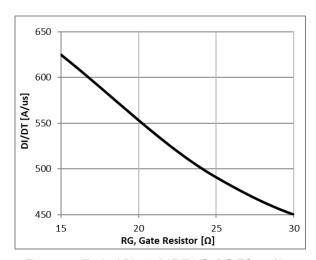


Figure 13: Typical Diode DI/DT VS. RG,TC=25 $^{\circ}$ C VCC=400V, VGE=15V, IF=60A

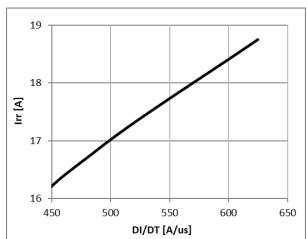


Figure 14: Typical Diode IRR VS. DI/DT,TC=25°C VCC=400V,VGE=15V, IF=60A

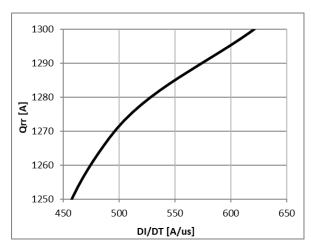


Figure 15: Typical Diode Qrr VS. DI/DT,TC=25℃ VCC=400V, VGE=15V, IF=60A

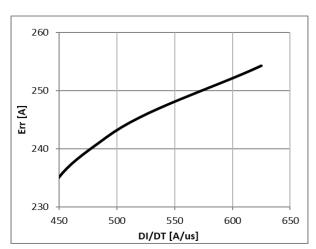


Figure 16: Typical Diode Err VS. DI/DT,TC=25 $^{\circ}$ C VCC=400V, VGE=15V, IF=60A

JNG60T65AYU3

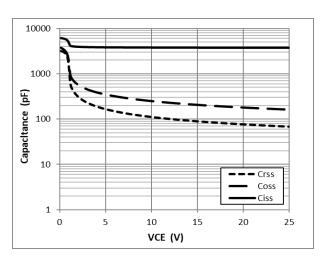


Figure 17: Typical Capacitance VS. VCE, $VGE {=} 0V, f {=} 1MHz \label{eq:VGE}$

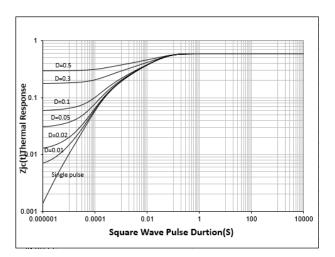
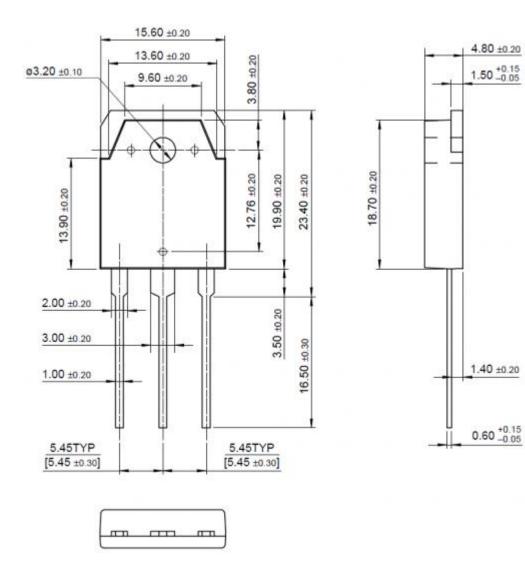



Figure 18: Normalized transient thermal impedance junction-to-case

TO-3P PACKAGE OUTLINE

JNG60T65AYU3

Disclaimers

JIAEN Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to JIAEN's terms and conditions supplied at the time of order acknowledgement.

JIAEN Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent JIAEN deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

JIAEN Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using JIAEN's components. To minimize risk, customers must provide adequate design and operating safeguards.

JIAEN Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in JIAEN's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of JIAEN's products with statements different from or beyond the parameters stated by JIAEN Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated JIAEN's product or service and is unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for any such statements.