
IGBT

Features

- 1200V,75A
- $V_{CE(sat)(typ.)}$ =1.6V@ V_{GE} =15V, I_{C} =75A
- Optimized for minimum saturation voltage
- Low operation frequencies (<1kHz)
- Industry standard TO-247 package

General Description

JIAEN FS-IGBTs offer highest efficiency available for application such as PTC heating.

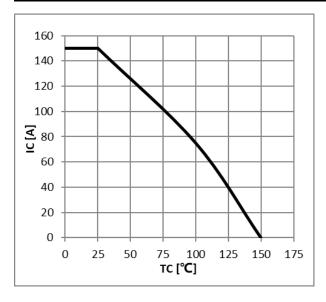
Absolute Maximum Ratings

Symbol	Parameter	Value	Units	
Vces	Collector-Emitter Voltage 1200		V	
V_{GES}	Gate-Emitter Voltage ± 30 V		V	
	Continuous Collector Current (Tc=25 °C)		А	
Ic	Continuous Collector Current (Tc=100°C)	75	А	
Ісм	Pulsed Collector Current (Note 1) 225		А	
Б	Maximum Power Dissipation ($T_C=25~^{\circ}C$)		W	
P _D	Maximum Power Dissipation (Tc=100°C)	210	W	
TJ	Operating Junction Temperature Range	-55 to +175	$^{\circ}$	
T _{STG}	Storage Temperature Range	-55 to +150	$^{\circ}$	

Thermal Characteristics

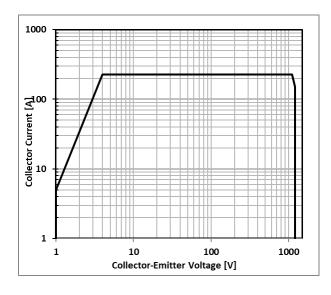
Symbol	Parameter	Max.	Units
R _{th j-c}	Thermal Resistance, Junction to case for IGBT	0.36	°C/ W
R _{th j-a} Thermal Resistance, Junction to Ambient		40	°C/W

Electrical Characteristics (Tc=25℃ unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	1200	-	-	V
I _{CES}	Collector-Emitter Leakage Current	V _{CE} = 1200V, V _{GE} = 0V	-	-	250	uA
I _{GES}	Gate Leakage Current, Forward	$V_{GE} = + 30V, V_{CE} = 0V$	-	-	<u>+</u> 100	nA
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_{C} = 250uA$	4	-	6	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =15V, I _C = 75A	-	1.6		V
Qg	Total Gate Charge	Vcc=960V V _{GE} =15V	-	172		nC
Qge	Gate-Emitter Charge		-	51.6		nC
Qgc	Gate-Collector Charge	IC=75A	-	105.7		nC
t d(on)	Turn-on Delay Time	Vcc=600V V _{GE} =15V I _C =75A R _G =15Ω	-	53	-	ns
t r	Turn-on Rise Time		-	137	-	ns
t d(off)	Turn-off Delay Time		-	613	-	ns
t f	Turn-off Fall Time		-	112	-	ns
Eon	Turn-on Switching Loss	Inductive Load	-	6.8	-	mJ
Eoff	Turn-off Switching Loss	T _C =25 ℃	-	6.5	-	mJ
Ets	Total Switching Loss		-	13.3	-	mJ
C _{ies}	Input Capacitance	V _{CE} =25V V _{GE} =0V	-	3664	-	pF
Coes	Output Capacitance		-	215	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	39	-	pF

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature


Typical Performance Characteristics

450 400 350 8 300 9 300 150 150 0 25 50 75 100 125 150 175 TC [°C]

Figure 1: Maximum DC Collector Current VS. case temprature

Figure 2: Power Dissipation VS. Case Temperature

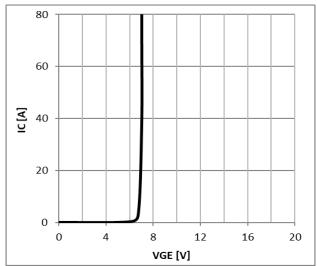
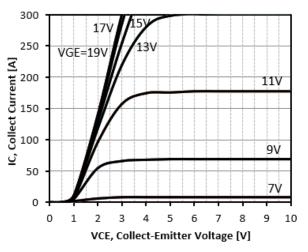



Figure 3: Reverse Bias SOA,TJ=125°C,VGE=15V

Figure 4: Typical Gate Threshold Voltage

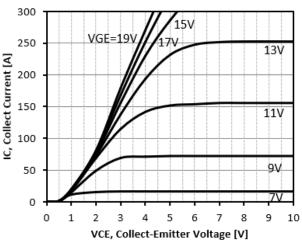


Figure 5: Typical IGBT Output characteristics, $TJ = 25\,^{\circ}\text{C}; tp = 300us$

Figure 6: Typical IGBT Output characteristics, $TJ=150\,^{\circ}\text{C}; tp=300 \text{us}$

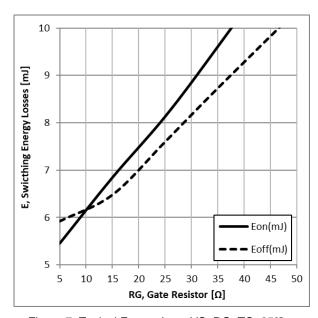


Figure 7: Typical Energy Loss VS. RG, TC=25 ℃, L=200uH,VCE=600V,VGE=15V,IC=75A

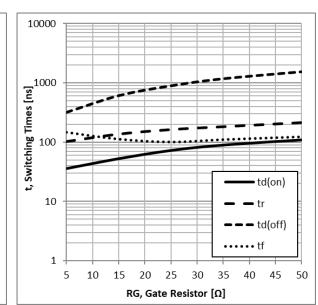


Figure 8: Typical Switching Time VS. RG, TC=25°C, L=200uH,VCE=600V,VGE=15V,IC=75A

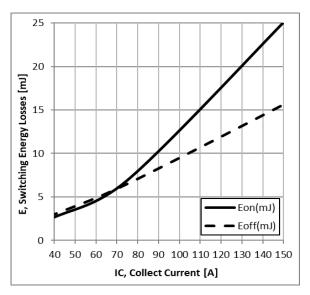


Figure 9: Typical Energy Loss VS. IC,TC=25 $^{\circ}$ C, L=200uH,VCE=600V, VGE=15V,RG=15 $^{\circ}$

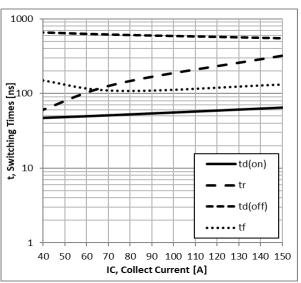


Figure 10: Typical Switching Time VS. IC,TC=25°C, L=200uH,VCE=600V,VGE=15V,RG=15Ω

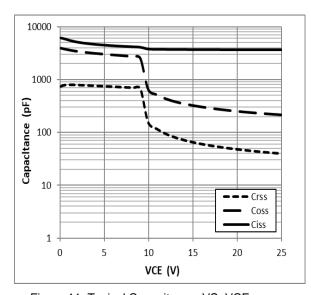


Figure 11: Typical Capacitance VS. VCE, VGE=0V,f=1MHz

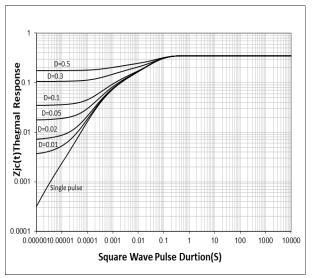
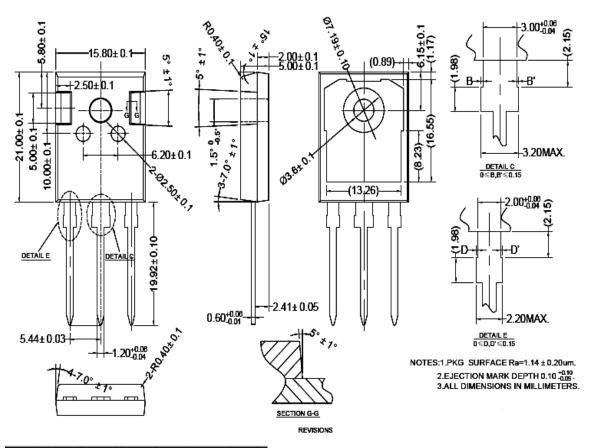



Figure 12: Normalized transient thermal impedance junction-to-case

TO247 PACKAGE OUTLINE

公差标注	公差值	表面粗糙度
0	±0.2	Ra3.2~6.3
0.0	±0.1	Ra1.6~3.2
0.00	±0.01	Ra0.8~1.6
0.000	±0.005	Ra0.4~0.8
0.0000	±0.002	Ra0.2~0.4

0≤D,D'≤0.15

NOTES:1.PKG SURFACE Ra=1.14 ± 0.20um. 2.EJECTION MARK DEPTH 0.10 +0.10 3.ALL DIMENSIONS IN MILLIMETERS.

Disclaimers

JIAEN Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to JIAEN's terms and conditions supplied at the time of order acknowledgement.

JIAEN Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent JIAEN deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

JIAEN Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using JIAEN's components. To minimize risk, customers must provide adequate design and operating safeguards.

JIAEN Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in JIAEN's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of JIAEN's products with statements different from or beyond the parameters stated by JIAEN Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated JIAEN's product or service and is unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for any such statements.